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Abstract: In this study we extend a model, proposed by Dendrinos, which describes dynamics of
change of influence in a social system containing a public sector and a private sector. The novelty is
that we reconfigure the system and consider a system consisting of a public sector, a private sector,
and a non-governmental organizations (NGO) sector. The additional sector changes the model’s
system of equations with an additional equation, and additional interactions must be taken into
account. We show that for selected values of the parameters of the model’s system of equations,
chaos of Shilnikov kind can exist. We illustrate the arising of the corresponding chaotic attractor and
discuss the obtained results from the point of view of interaction between the three sectors.

Keywords: interacting social sectors; nongovernmental organizations; chaotic attractor; Shilnikov
chaos; numerical simulations

1. Introduction

Social and economic systems are of high complexity and they are often studied by the methods
of nonlinear dynamics and statistical physics [1–6]. This allows better understanding of chaos
connected to social and economic processes [7–9]. One of the possible frameworks for modeling
such processes is connected to the ecological determinism [10,11]. Many deterministic ecological
models are inspired by the Lotka–Volterra model, which represents the dynamical interactions of
two competing species [12–16]. Recently the model has been adapted to describe, for example,
dynamics of other subjects, such as interacting populations in presence of adaptation [17–21], financial
markets [22–24], and socio–economic systems [25–28]. We note that if the number of competing species
in the Lotka–Volterra model becomes three or larger, then chaotic behavior in the phase space can
appear [29–31].

Below we study a model connected to dynamical interactions among several sectors in a
society. In more detail, we extend a version of the generalized Volterra–Lotka model, presented
in [11]. This model describes the dynamics of decision-making in the public and private sectors.
According to the interpretation of Dendrinos [11], this model can be used to simulate all the possible
dynamical interactions between two basic components of decision-making in any social system: for
an example, political decision-making and public policy-making including action components and
market decision-making elements. Dendrinos wrote a detailed review of modified versions of the
generalized Volterra–Lotka model from the point of view of the three broadly defined kinds of economic
organization: the Keynesian, Marxist, and Laissez-faire. According to these macroeconomic theories,
several variants of the basic model dependent on the types of dynamical ecological interactions between
the private and public sectors of a social system (the signs and magnitudes of system parameters) exist.
For an example, the Keynesian model corresponds to an ecologically cooperative association between
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the two sectors, whereas both: Marxist and Laissez-faire models correspond to an isolative association
(or predation) between the two economic sectors. In the case of Marxism, the dominant factor is the
influence of the state, as the market sector is extinct. The opposite scenario holds for the Laissez-faire
model. The general model considered in [11] is

ẋ = x(a10 + a11x + a12y)
ẏ = y(a20 + a21x + a22y)

(1)

where x (x > 0) is a quantity accounting for the influence of the public decision-making sector,
y (y > 0) is a quantity accounting for the influence of the private decision-making sector; “dot”
presents a time derivative (e.g., ẋ = dx

dt ); and a10, a11, a12, a20, a21, a22 are interaction parameters
whose values can be between −∞ and +∞. The variables x and y could be any macrovariables
depicting the influence of either the public or private sector respectively. Such variables can be, for
example, the amounts of investments in the public and private sectors.

Below we shall consider an extension of the model of Dendrinos, keeping in the mind that this
is a model for dynamical interactions of decision-making components in a social system. We will
differentiate a non-governmental (NGO) sector in addition to the rest of the system which is assumed
to be separated into public and private sector. Thus we consider a three-component system, and we are
going to study some consequences of the existence of the third component which actively participates
in the decision-making at least in some countries where the NGO sector is strong enough.

The basis for our study is the following particular case of (1):

ẋ = x(a10 − a11x− a12y)
ẏ = y(−a20 + a21x + a22y)

(2)

The values of the parameters a10, a11, a12, a20 a21, a22 will be assumed to be nonnegative. The equation
for x describes logistic growth of x, and the increase of y leads to a decrease of ẋ which is the growth
of x per unit time (the increase of the influence of the private sector slows the growth of the influence
per unit time of the public sector). In addition, the increase of the influence of the public sector leads
also to an increase of the growth per unit time of the influence of the private sector. The increase of the
influence of the private sector leads to a further increase of the growth per unit time of the influence of
the private sector. Thus (2) describes a situation which is favorable for the private sector.

Below we extend the system (2) by adding an ordinary differential equation which describes
dynamics of the NGO sector. In more detail, we shall model dynamical interactions among the
influences of the public, the private, and the NGO sectors. A short description of the extended model
is presented in Section 2 of the paper. Our goal is to demonstrate that chaos based on the Shilnikov
theorem can arise in the extended model (we note that chaos is not possible either in the system (1) or
in the system (2) and this is a consequence of the Poincare–Bendrixon theorem for a plane). In Section 3
conditions for existence of Shilnikov chaos in the extended model are analytically determined. 3D
phase portraits, which illustrate the evolution of a system chaotic attractor, are presented in Section 4.
Several concluding remarks are summarized in Section 5.

2. Mathematical Formulation of the Problem

Here we shall extend the Dendrinos’s model by adding a new ordinary differential equation to
the system (2). The extended model is:

ẋ = x(a10 − a11x− a12y− a13z− a14yz)
ẏ = y(−a20 + a21x + a22y− a23z− a24xz)
ż = z(a30 − a31x− a32y− a33z− a34xy)

(3)
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Above x (x > 0) is a quantity accounting for the influence of the public sector; y (y > 0) is the quantity
accounting for the influence of the private sector; and z (z > 0) is the quantity accounting for the
influence of the NGO sector. All coefficients in the system (3) are nonnegative. In the model (3) we
account for the two-sector interactions and for the interaction between the three sectors (the terms
proportional to xyz). The time derivative of a quantity corresponds to the growth of the influence of
the corresponding sector per unit time. We assume that an increase of the influence of the NGO sector
leads to a decrease of the growth of the influence per unit time of the public sector, and the increase
of the product of influences of the private sector and the NGO sector also leads to a decrease of the
growth of the influence per unit time of the public sector (this is accounted for by the last term in the
first equation of (3). The increase in the influence of the NGO sector is assumed to decrease the growth
of the influence per unit time of the private sector and the increase in the product of influence of the
public and NGO sectors leads to a decrease of the growth of the influence per unit time of the private
sector. In addition, the increase of the influence of the public and private sectors leads to a decrease
of the growth of the influence per unit time of the NGO sector; and an increase of the product of the
influences of the public and private sectors also leads to a decrease of the growth of the influence
per unit time of the NGO sector. Finally, if no interaction between the sectors exists, then the growth
of the influence per unit time of the public and NGO sector decreases with increasing influence of
these sectors, whereas the growth of the influence per unit time of the private sector increases with
increasing influence of the private sector.

The model (3) favors the private sector, and there is competition between the private sector and
the NGO sector for influence. The presence of private and NGO sectors decreases the growth of the
influence of the public sector and the presence of public and private sectors decreases the growth of
the influence of the NGO sector. In the absence of a private sector, the increase of the influence of
public and NGO sectors is assumed to follow a logistic law.

The inclusion of third sector in the model opens the possibility for the existence of chaotic motion
in the phase space of the quantities x, y, and z. What is interesting is that in the studied case this chaotic
motion can be of Shilnikov kind. In more detail, chaotic motion in the model system (3) can exist if the
conditions of the theorem of Shilnikov [32] are satisfied. The theorem of Shilnikov is as follows.

Theorem 1. If for the system
ẋ = ρx−ωy + P(x, y, z)
ẏ = ωx + ρy + Q(x, y, z)
ż = γz + R(x, y, z)

(4)

where (P, Q, R are Cr functions (1 < r < ∞) vanishing together with their first derivative at O = (0, 0, 0)),
an unstable orbit Γ exists, which is a homoclinic connection, and if

γ > −ρ > 0 (5)

then every neighborhood of the orbit Γ contains a denumerable set of unstable periodic solutions of saddle type.

3. Appearance of Shilnikov Chaos in the System (3)

In order to obtain chaotic behavior for the system (3), according to the requirements of the theorem
of Shilnikov we have to analyze the properties of the equilibrium points of the system (3). In analogy
with [17–21,33] we find out that one of the possibilities for arising of Shilnikov chaos in the system (3)
is in the case where the system parameters are described by the following relationships:

a11 = a12 = a21 = η1, a22 = a33 = a13 = a23 = a32 = η2,
a31 = η3, a14 = a24 = a34 = η4

(6)
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and
a10 = 2η1 + η2, a20 = η1, a30 = η3 + 2η2 (7)

In this case the number of system parameters is reduced to four: ηi (i = 1, 2, 3, 4), and the
system (3) becomes:

ẋ = x(2η1 + η2 − η1x− η1y− η2z− η4yz)

ẏ = y(−η1 + η1x + η2y− η2z− η4xz)

ż = z(η3 + 2η2 − η3x− η2y− η2z− η4xy)

(8)

The equilibrium points of (8) are:

E1 : x = y = z = 0, E2 : x = z = 0, y = η1
η2

, E3 : x = 2η1+η2
η1

, y = z = 0,

E4 : x = y = 0, z = 2η2+η3
η2

, E5 : x =
2η1η2−η2

1+η2
2

η1(η1−η2)
, y = η1+η2

η1−η2
, z = 0,

E6 : x = 0, y = 1
2

2η2+η3+η1
η2

, z = 1
2

2η2−η3+η1
η2

,

E7 : x = η2+η3−2η1
η3−η1

, y = 0, z = η1η3+η2η3−2η1η2
η2(η3−η1)

E8,9,10,11,12 :

y =
η3η4x2−(η1η2+η2η3+2η2η4+η3η4)x+η1η2+η2η3+2η2

2
2η2

2−η2
4 x2

z =
η1η4x2−(η2η3+η1η2−η1η4)x+2η2

2+η2η3−η2η1
2η2

2−η2
4 x2

(9)

where x8,...,12 are roots of the equation:

x5 − η2η4 + 2η1η4 + η1η2

η1η4
x4 +

η1(η2η3 − 5η2
2 + η2η4 − η3η4)− η2η3(η3 − η2)

η1η2
4

x3

+
1

η1η3
4
(2η2

2η3η1 − η2
1η2

2 + 7η4η2
2η1 + η4η2

1η2 + η2
2η2

3 + 2η2
4η2η1 + 2η4η3

2

+2η3
2η1 + η2

4η3η1 − η4η2η3η1 + 3η4η2
2η3 + 2η4η2η2

3) x2 +
1

η1η4
4
(−2η4

2η3

−η2
4η2

1η2 − 4η2
4η3

2 − 2η2
1η3

2 + 6η1η4
2 − 6η4η3

2η1 − 2η1η3
2η3 − 2η4η2

2η2
3 − 4η4η3

2η3

+2η4η2
1η2

2 − 2η4η2
2η3η1 − 4η2

4η2
2η3 − η2

4η2η2
3) x +

1
η1η4

4
(2η2

1η3
2 + 2η4

2η3

+2η1η3
2η3 + η4η2

2η2
3 + 4η4η3

2η3 − η4η2
1η2

2 + 4η4η4
2 − 6η1η4

2) = 0

The equilibrium states (9) are realistic (nonnegative) when

η3 > η1 > η2 > 0, η4 > 0 (10)

According to requirements of the theorem of Shilnikov, chaotic motion for the system (8) will
be observed if two appropriate fixed points with different dynamical properties exist [34]. The first
of these points must become unstable by means of a local Hopf bifurcation, and the second one
must be of a saddle—focus type. The linear stability of the equilibrium points is determined by the
Jacobian matrix:

Mij =

 M11 − λ − η1x − η2x
η1y M22 − λ − η2y
−η3z − η2z M33 − λ

 (11)
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where

M11 = 2η1 + η2 − 2η1x− η1y− η2z− η4yz

M22 = −η1 + η1x + 2η2y− η2z− η4xz (12)

M33 = 2η2 − η3x− η2y− 2η2z− η4xy

In order to obtain the Hopf bifurcation in our three-dimensional system, we use the center-
manifold theorem. In accordance with this theorem we must reduce the considered system to a normal
form in which the bifurcation occurs when the system parameters approach 0, and an equilibrium point
is located in the origin with pure imaginary characteristic eigenvalues. In our case this equilibrium
point is E8 = (1, 1, η2

η2+η4
) and its eigenvalues are determined by the following characteristic equation:

(η3
2 + 3η4η2

2 + 3η2η2
4 + η3

4)λ
3 + (η1η3

4 + η3
4η2 + 3η1η2η2

4

−η2
2η2

4 − η4η3
2 + 3η1η4η2

2 + η4
4 + η1η3

2)λ
2 + (η1η4

4 + η2
1η3

4

−3η2
4η2

2η3 − η2
4η2

2η1 − 7η4η4
2 − 3η4η3

2η3 + 3η4η2
1η2

2 + 3η2
4η2

1η2

+η3
4η2η1 − 2η5

2 − η4
2η3 − 3η2η4

4 − η3η3
4η2 − 10η2

2η3
4 + η2

1η3
2

−η4η3
2η1 − 12η2

4η3
2)λ + 3η4η3

2η3η1 + η5
2η3 + 4η4η4

2η3 − 7η3
4η2

2η1

+2η2
1η3

2η4 + 3η2
4η2

2η3η1 + 2η2
1η2

2η2
4 + 2η2

1η2η3
4 + 8η3

4η3
2

−11η2
4η3

2η1 − 2η4
4η2η1 + 2η4η5

2 + η2
1η4

4 + 6η2
4η4

2 + η2η3
4η3η1

+η1η4
2η3 − 3η5

2η1 + η2
1η4

2 + 2η3η3
4η2

2 − 9η4η4
2η1 + 5η2

4η3
2η3 + 2η2

2η4
4 = 0

(13)

The limit cycle arising by the Hopf bifurcation must increase its size with appropriate change of
the system parameters and must come close to the second equilibrium point, which is of a saddle focus
type. Then, the Shilnikov theorem states that if a homoclinic orbit forms for the saddle focus, and
if λ3 > −ρ, then chaotic behavior will be observed in a parameter range around the value at which
the homoclinic orbit arises. For the case studied in this text, the saddle focus is the equilibrium point:

E5 = (
2η1η2−η2

1+η2
2

η1(η1−η2)
, η1+η2

η1−η2
, 0). The eigenvalues connected to linear stability of this equilibrium point are:

λ1,2 =
3η1η2−η2

1+2η2
2±
√

13η2
1 η2

2+2η3
1 η2+4η3

2 η1−3η4
1

2(η1−η2)
,

λ3 =
3η1η3

2−4η2
1 η2

2+η3
1 η2+η2

1 η3η2−η3η3
2+η4η2

1 η2+3η4η1η2
2−η4η3

1+η4η3
2

η1(η1−η2)2

(14)

Then, the area of validity of the Shilnikov theorem for the system (8) is determined by the
following proposition.

Proposition 1. When 0 < η2/η1 <
√

17−3
4 , η3/η1 > 1, 0 < η4/η1 < 7

√
17+33

3
√

17−5
β + 61

√
17−251

3
√

17−5
, chaotic

motion of the Shilnikov kind for the system (8) exists.

Proof. We denote α = η2
η1

, β = η3
η1

and δ = η4
η1

, assuming α < 1, β > 1 and δ > 0 to satisfy the condition
(10) for the system parameter region. Rewriting Equation (14) in terms of α, β, and δ, we search for a
solution of the system of inequalities

13α2+4α3+2α−3
2(α−1) < 0, −3α−2α2+1

2(α−1) < 0,

3α3−4α2+α+βα−βα3+δα+3δα2−δ+δα3

(α−1)2 > 0,
(15)
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and
3α3 − 4α2 + α + βα− βα3 + δα + 3δα2 − δ + δα3

α− 1
> −−3α− 2α2 + 1

2
, (16)

for which the equilibrium point E5 of the system (8) is of a saddle focus type, and the condition (5) is
satisfied. The solution of the system of inequalities (15) and (16) determines the parameter region:

0 < α <

√
17− 3

4
, β > 1, 0 < δ <

7
√

17 + 33
3
√

17− 5
β +

61
√

17− 251
3
√

17− 5
, (17)

for which the Shilnikov theorem for the system (8) is satisfied.

4. Numerical Results

The process of the appearance of Shilnikov chaos in the system (8) is illustrated in Figure 1. We use
η3 as a control parameter in order to present the evolution of the attractor. The starting point for the
calculated trajectories is (0.95, 0.95, 0.95), which is in the vicinity of the fixed point E8. As Figure 1
shows, initially, the system (8) has a stable equilibrium state (E8) for η3 < 1.391 (Figure 1a). With an
increasing value of η3, the equilibrium point becomes unstable, and by means of a supercritical Hopf
bifurcation at η3 = 1.391, a limit cycle appears (Figure 1b). Figure 1c,d illustrate the evolution of this
limit cycle with an increasing value of η3. We observe that when η3 > 1.391, initially the trajectory
spirals onto the limit cycle of increasing size (Figure 1c), whereas at η3 > 1.5, this orbit becomes
a boundary of the unstable manifold of the saddle focus equilibrium point (E5) that spirals onto it
(Figure 1d,e). Figure 1f shows the increasing influence of this saddle focus when further increasing
the value of η3. Finally, when η3 � 2 period doubling cascade is observed, and the mechanism of
Shilnikov holds: The unstable 1D manifold of the saddle focus touches its stable 2D manifold, thereby
forming the aforementioned homoclinic loop of the saddle-focus (Figure 1g). After that, numerous
quasiperiodic orbits around the homoclinic loop occur, as the attracting set already contains a set of
complex structures; i.e., a spiral strange attractor has appeared (Figure 1h).
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Figure 1. Transition to Shilnikov chaos in the system (7). The values of system parameters are
η1 = 0.6, η2 = 0.1, η4 = 0.02. We vary only the value of η3. Figure (a): η3 = 1. There is a stable
equilibrium state. Figure (b): η3 = 1.391. The cyclic state after the Hopf bifurcation is purely presented.
Figure (c): η3 = 1.4. The trajectory spirals onto the limit cycle. Figure (d): η3 = 1.5. The saddle focus
E6 already has approached. Figure (e): η3 = 1.7. The unstable manifold of the saddle focus is clearly
visible. Figure (f): η3 = 1.9. Periodic motion is observed. Figure (g): η3 = 2. Period double cascade is
observed. A homoclinic loop appears. Panel (h): η3 = 2.3. Chaotic motion already exists. With further
increasing value of η3 the attractor again is reduced to a multi–periodic cycle, as at η3 = 2.5 the periodic
motion vanishes.

The numerical results show several possible scenarios for evolution of the influence of the studied
sectors. Scenario 1 is shown in Figure 1a. In this scenario, the system arrives after some transition
time to an equilibrium state where the influences of the three sectors are fixed (fixed point) and the
system remains at this equilibrium if the values of the parameters do not change. This scenario can be
destabilized by changes to the system parameters, and then another scenario (Scenario 2) can appear:
after some transition time wherein the influences of the sectors begin to oscillate, one observes periodic
oscillations of the influences of the three sectors, and this is represented as a limit cycle on Figure 1b–f.
Such behavior is rarely observed and what is much more probable is scenario 3: chaotic changes of the
influences of the three sectors—Figure 1g,h. In this scenario an equilibrium state is destabilized and
there is chaotic motion of the values of the quantity characterizing the influence. This chaotic motion is
between two unstable equilibrium states described by the fixed points corresponding to the Shilnikov
chaos. Scenario 3 can be destabilized by changing the parameters, and the scenario 2 or scenario 1 can
become stable again.

5. Concluding Remarks

In this paper we show that when the influence of the NGO sector is taken into account, the
behavior of a national system may become complicated. We note that the equilibrium point E8

describes the situation when the influences of the public and private sector are the same, and the
influence of the NGO sector is smaller than each influence of the other two sectors. The saddle focus
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E5 corresponds to situation in which the influence of the NGO sector is 0 and the influence of the
private sector is larger than its influence at the point E8. The observed chaotic attractor is connected to
a situation in which the influence of the private sector increases at the expense of decreasing influence
of NGO sector, and then the influence of NGO sector increases and at the same time the influence
of the private sector decreases. In this process the influence of the public sector moves between the
values of the fixed points E5 and E8. In other words, the Shilnikov chaos corresponds to a situation in
which the competition between the private and NGO sectors leads to large changes in the influence of
the NGO sector (this influence can even become very small), whereas the influences of the other two
sectors oscillate in irregular ways. Changes to the values of the parameters of the model system can
lead to different scenarios. For example, there can be equilibrium between the influences of the three
sectors (corresponding to a fixed point), or the values of the quantity corresponding to the influences
can oscillate over time (which correspond to the attracting sets which are limit cycles).
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